B.SC. FOURTH SEMESTER (HONOURS) EXAMINATIONS, 2021

Subject: Mathematics
Course ID: 42113
Course Code: SH/MTH/403/C-10
Course Title: Ring Theory and Linear Algebra-I
Full Marks: 40
Time: 2 Hours

The figures in the margin indicate full marks

Notations and symbols have their usual meaning.

1. Answer any five from the following questions:
 $2 \times 5=10$

a) Find all the solutions of $x^{3}=x$ in the $\operatorname{ring}\left(\mathbb{Z}_{6},+, \cdot\right)$.
b) Give an example of a right ideal in a ring which is not a left ideal.
c) Give an example of a ring homomorphism which is not an isomorphism.
d) Find the kernel of the homomorphism $f: \mathbb{Z} \rightarrow \mathbb{Z}_{6}$ defined by $f(n)=[n]$ for all $n \in \mathbb{Z}$.
e) Let V be the vector space of real valued continuous functions over \mathbb{R}, then show that the set W of solutions of $3 \frac{d^{2} y}{d x^{2}}-7 \frac{d y}{d x}+3 y=0$ is a subspace of V.
f) Give an example of a set A of vectors in the vector space \mathbb{R}^{3} over \mathbb{R} such that A is a spanning set for the vector space but not linearly independent.
g) Consider the following map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $f\left(x_{1}, x_{2}\right)=\left(\sin x_{1}, x_{2}\right)$. Is f a linear operator on \mathbb{R}^{2} over \mathbb{R} ? Justify your answer.
h) Consider the following linear operator $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ (over $\left.\mathbb{R}\right)$ defined by $T\left(x_{1}, x_{2}\right)=$ ($-x_{1}, x_{1}$). Find the matrix representation of T with respect to the standard ordered basis $B=\{(1,0),(0,1)\}$.

2. Answer any four from the following questions:

a) Examine whether the following sets are field or not.

$$
\text { (i) }\{a+b \sqrt{2}: a, b \in \mathbb{Z}\} \text { (ii) }\{a+b \sqrt{2}: a, b \in \mathbb{Q}\} \text {. }
$$

b) State and prove second isomorphism theorem for rings.

$$
1+4=5
$$

c) Let R be a commutative ring with $1(1 \neq 0)$. Then prove that a proper ideal P of R is prime if and only if the quotient ring R / P is an integral domain.
d) Show that the set $B=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ where $\alpha_{1}=(1,0,-1), \alpha_{2}=(1,2,1), \alpha_{3}=(0,-3,2)$ forms a basis for the vector space \mathbb{R}^{3} over \mathbb{R}. Express each of the standard ordered basis vectors as linear combination of $\alpha_{1}, \alpha_{2}, \alpha_{3}$. $3+2=5$
e) Define subspace of a vector space. Let V be a vector space over the field F. Prove that intersection of any two subspaces of V is again a subspace of V. Consider the vector space $M_{n}(\mathbb{R})$ of all real $n \times n$ matrices over \mathbb{R}. Is $W=\left\{A \in M_{n}(\mathbb{R}): A\right.$ is invertible $\}$ a subspace of $M_{n}(\mathbb{R})$? Justify your answer. $\quad 1+2+2=5$
f) Let T be a linear operator on \mathbb{R}^{3} over \mathbb{R} such that the matrix representation of T with respect to the standard ordered basis $B=\{(1,0,0),(0,1,0),(0,0,, 1)\}$ is $\left(\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4\end{array}\right)$. Find a basis for (i) the null space of T and (ii) the range space of T.

$$
21 / 2+21 / 2=5
$$

3. Answer any one from the following questions:

a) (i) Define maximal ideal with an example.
(ii) Define field of quotients of an integral domain D .
(iii) Let V be a vector space over the field of real numbers and $\{\alpha, \beta, \gamma\} \subseteq V$ be a set of linearly independent vectors. Then prove $(\alpha+\beta),(\beta+\gamma),(\gamma+\alpha)$ are also linearly independent.
(iv) Let F be a field and consider the vector space $F^{2}=\{(a, b): a, b \in F\}$ over F . Find the T^{-1}, if exists, where T is linear operator defined on F^{2} by $T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, x_{1}\right)$.

$$
2+2+3+3=10
$$

b) (i) Show that the set of all polynomials over \mathbb{Z} with constant term zero is a prime ideal in $\mathbb{Z}[x]$ but not maximal there.
(ii) Define quotient space of a vector space.

Let $V=\mathbb{R}^{4}$ and W be a subspace of V generated by the vectors $(1,0,0,0),(1,1,0,1)$.
Find a basis of the quotient space V / W.

$$
(3+2)+(1+4)=10
$$

